

Preliminary Interference Assessment and Potential Mitigation Techniques for NGSO EESS Congestion in the 8025-8400 MHz Band

presented by Ted Berman – ITT Industries

International EES Wideband Downlink Workshop March 25-27, 2003 Orlando, Florida, USA

Introduction

- □ Paper presents the results of an analysis to determine the interference statistics of a set of operational and planned NGSO EESS satellite networks under a set of worst-case situations
 - > i.e., no practical technical or operational mitigation techniques were used to minimize inter-system interference
- ☐ Key part of the analysis is the examination of a potential strategy for interference mitigation: homogeneity of satellite networks parameters
- ☐ Four sets of analyses were performed
 - > The baseline set contained the least homogeneous parameters
 - ➤ Each subsequent set increased the level of homogeneity relative to the previous one

The Interference Model

- ☐ The figure below illustrates a specific sharing situation concerning space-to-Earth links of two networks of a more general deployment of n networks
- ☐ The aggregate interference power received, in W/Hz, is given by

$$I_{j}(f) = A_{iso}(f) \sum_{i=1,i\neq j}^{n} PFD_{i}(f,el_{ij})G_{Rj}(\theta_{ij})$$

Characteristics of Interfering EESS Missions

- ☐ An extensive search of existing and planned NASA and other US Government missions in the 8025-8400 MHz band has been performed
- **□** Based on information found in the Space Frequency Coordination Group (SFCG) database and the ITU SNS database
- ☐ Analysis assumes that all missions operate co-frequency

Mission Name	Mission Number	EIRP Density (dBW/Hz)	Apogee (km)	Perigee (km)	Inclination (deg.)	Right Ascending Node (deg.)
CALIPSO	1	-59.5	705.0	705.0	98.08	204.75
TERRA	2	-64.2	714.0	697.0	98.2	337.5
AURA	3	-58.3	705.0	705.0	98.2	204.5
AQUA	4	-59.6	705.0	705.0	98.2	202.5
ICESAT	5	-56.0	602.4	584.3	94.0	0
LANDSAT-7	6	-56.7	705.0	705.0	98.2	330
EO-1	7	- 49.1	705.0	705.0	98.2	330.25
NPP	8	-65.8	824.0	824.0	98.2	337.5
CORIOLIS	9	-66.9	830.0	830.0	98.7	0
SAC-C	10	-60.7	705.0	700.0	98.29	333.75

PFD Limits

☐ ITU PFD Limits in 8025-8400 MHz band, Table 21-4 in Article 21, expressed in 1 Hz band

 \rightarrow -186 dBW/m²/Hz,

 $-176+(\theta-5)/2 \text{ dBW/m}^2/\text{Hz},$

 \rightarrow -176 dBW/m²/Hz,

 $\theta \leq 5^{\circ}$

 $5^{\circ} \le \theta \le 25^{\circ}$

 $\theta \geq 25^{\circ}$

☐ PFD Values for each mission are shown below

Are lower than ITU limit, by up to 20 dB

Characteristics of Victim EESS Missions

- ☐ Victim EESS missions are taken from the population of interfering EESS missions discussed above
- A separate analysis is done using each of the 10 missions as a victim being interfered with by the other 9 missions
- ☐ Antennas modeled by Annex III, Appendix 8 of the ITU Radio Regulations

Mission Name	Mission Number	ES Name	ES Latitude	ES Longitude	ES Antenna Gain (dBi)
CALIPSO	1	Fairbanks, AK	64.8°N	147.5°W	59.3
TERRA	2	Poker Flats, AK	65.1°N	147.5°W	57.5
AURA	3	Poker Flats, AK	65.1°N	147.5°W	57.5
AQUA	4	Poker Flats, AK	65.1°N	147.5°W	57.5
ICESAT	5	Poker Flats, AK	65.1°N	147.5°W	57.5
LANDSAT-7	6	Poker Flats, AK	65.1°N	147.5°W	57.6
EO-1	7	Poker Flats, AK	65.1°N	147.5°W	56.5
NPP	8	Svalbard, Norway	78.2°N	15.4°E	57.8
CORIOLIS	9	Fairbanks, AK	64.8°N	147.5°W	59.3
SAC-C	10	Falda Del Carmen	31.5°S	64.5°W	54.9

Allowable Levels of Interference

- □ Recommendation ITU-R SA.1026-3 provides the interference criteria in the 8025 8400 MHz band (this formulation of the recommended interference criteria ignores the reference bandwidth)
 - \triangleright I₀ not to exceed -197 dBW/Hz more than 0.025% of the time
 - \triangleright I₀ not to exceed -201 dBW/Hz more than 0.25% of the time
 - \triangleright I₀ not to exceed -207 dBW/Hz more than 20% of the time

PFD of Each Mission at Elevation Angle = 5°

- ☐ Some analysis cases make use of homogeneous PFD values
- ☐ Based on adjusting database PFD values
- \Box Database values at elevation angle = 5° shown below

	ITU	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
PFD (dBW/m^2/Hz)	186.0	198.7	-203.8	197.5	198.8	-194.3	195.9	188.3	-205.8	-207.0	199.9
rel to mean (dB)	13.0	0.3	-4.8	1.5	0.2	4.7	3.1	10.7	-6.8	-8.0	-0.9

Analyses: 4 Cases

- ☐ Case A: Baseline case
 - > EIRP Density as given in database
 - > Interferer transmit antennas are isotropic
 - Victim receive antenna gains as given in database
 - Transmit whenever in view of mission ground stations
- ☐ Case B: Same as Case A, except that
 - ➤ EIRP Density of each mission is adjusted so that the PFD level is equal to -199.0 dBW/m²/Hz at an elevation angle of 5.0°. To achieve this, the EIRP density level is adjusted by the amount shown in table above: e.g., for mission #1, it is decreased by 0.3 dB.
- ☐ Case C: Same as Case B, except that
 - ➤ The PFD level of each mission is set to -199.0 dBW/m²/Hz for all elevation angles
- ☐ Case D: Same as Case C, except that
 - ➤ Victim receive antenna gains are all set to the same value: 57.5 dBi
- ☐ Level of homogeneity increases from Case A to Case B to Case C to Case D

Discussion of Preliminary Results

The most interference is seen into missions #6 and #7, LANDSAT-7 and EO-1, and to a lesser degree, #3 and #4, AURA and AQUA. These pairs of missions use the same ground stations and have the same orbits, except that their right ascensions are separated by 0.25° and 2°, respectively. In effect, they are almost right on top of each other, causing large amounts of interference.
The missions discussed immediately above exceed the ITU recommended sharing criteria in all cases. The other missions exceed the criteria in only a few cases.
Homogeneity as modeled here has the effect of modifying the maximum interference levels seen, since the highest eirp density / PFD levels are reduced.
Homogeneity also reduces the difference (spread) of interference levels seen among the various missions.
The results of Cases C and D are very similar because the database victim receive antenna gains are very similar.

Degradation Relative to Best Case, Io Threshold = -197 dBW/Hz

	Improvement factor Γ_{iX}										
X \ i	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	
Case A	4.188	7.000	2.192	206.500	3.000	1.686	1.620	2.400	2.667	1.000	
Case B	2.625	2.000	1.885	1.000	2.000	1.412	1.396	1.200	1.333	1.000	
Case C	2.500	1.000	1.000	1.500	1.000	1.000	1.046	1.000	1.000	1.000	
Case D	1.000	1.000	1.000	1.500	1.000	1.006	1.000	1.000	1.000	1.000	

$$\Gamma_{iX} = \frac{P_{iX}(I > I_0)}{P_{iY}(I > I_0)}$$

$$i = \text{mission number}$$

$$X = A, B, C, D$$

$$Y = \text{Best case}$$

Degradation Relative to Best Case, Io Threshold = -201 dBW/Hz

	Improvement factor Γ_{iX}										
X \ i	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	
Case A	1.610	4.100	1.097	1.392	1.200	1.072	1.072	2.083	2.143	1.000	
Case B	1.130	1.300	1.062	1.057	1.000	1.072	1.071	1.000	1.000	1.000	
Case C	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Case D	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	

$$\Gamma_{iX} = \frac{P_{iX}(I > I_0)}{P_{iY}(I > I_0)}$$

$$i = \text{mission number}$$

$$X = A, B, C, D$$

$$Y = \text{Best case}$$

Degradation Relative to Best Case, Io Threshold = -207 dBW/Hz

	Improvement factor Γ_{iX}									
X \ i	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Case A	1.414	3.576	1.190	1.327	1.583	1.000	1.000	2.226	2.100	1.000
Case B	1.140	1.152	1.170	1.171	1.083	1.000	1.000	1.032	1.200	1.000
Case C	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case D	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

$$\Gamma_{iX} = \frac{P_{iX}(I > I_0)}{P_{iY}(I > I_0)}$$

$$i = \text{mission number}$$

$$X = A, B, C, D$$

$$Y = \text{Best case}$$

Results: Case A

Results: Case B

Results: Case C

Results: Case D

Conclusions from the NGSO Preliminary Study

- ☐ The goal of this preliminary study, as well as that of related future study, is to determine how to efficiently use this orbit/spectrum resource
- **☐** The following are the significant general results of this preliminary study
 - ➤ Homogeneity of missions' PFD levels does make a difference in terms of improving the sharing situation
 - > Application of an iso-flux pfd provides additional improvement in the sharing situation
 - > A factor that causes significant levels of interference to exist is having two co-orbiting satellites with very little orbital separation
- ☐ Future studies are planned to be performed using the results of this study as a baseline
 - Additional missions should be added to the analysis as their data become available
 - Other mitigation techniques, possibly including other types of homogeneity should be studied

Elevation Angle Distribution

- **□** Victim is Mission #2: Ground Station is Poker Flats, AK (Lat = 64.8° N)
- ☐ Interferer is Mission #1: Alt is 705 km, incl is 98.08°
- Large proportion of elevation angles between 5° and 25°
 - Using an isoflux PFD in this range will result in improvement
 - See Cases B and C above

Results: Cases A - D

